EXAMPLE

A tyre company claims that the mean life of tyres that it produces is 11,000 km with a standard deviation of 240 km. An independent supplier of tyres wants to investigate the company's claim. A test on a random sample of 144 tyres from the company gave a mean life of 10,963 km. Carry out a hypothesis test at the 5% level of significance to see if there is evidence to support the company's claim.

(9)

Solution

3.

1. State the null and alternative hypotheses. Null hypothesis, H₀:

The company produces tyres with a mean life of 11,000 km. $\mu = 11,000$. Alternative hypothesis, H_A:

The company produces tyres whose mean life is not 11,000 km. $\mu \neq 11,000$.

2. Convert the given results into z units (the test statistic):

Reject H_0 \longrightarrow Reject H_0 Fail to reject H_0 -1.96 1.96

We fail to reject H₀, as -1.85 is not in the critical regions.

4. Hence we fail to reject the company's claim.

In the above example, we used:

 $H_0: \mu = 11,000$

 $H_{A}: \mu \neq 11,000$

In these situations, because we do not use $\mu > 11,000$ or $\mu < 11,000$, no direction is stipulated. Therefore, this is a two-tailed test. (Only two-tailed tests are used on our course.) Also, H₀ always has an equal sign and uses population parameters.

Hypothesis testing – A summary

In the final analysis, testing the null hypothesis, H₀ simply involves a confidence interval and a red dot

Either

Confidence interval

If the red dot is inside the confidence interval we fail to reject H_0 .

Confidence interval

Or

Or calculate a confidence interval

If the red dot is outside the confidence interval we reject H_0 .

Z scores are called "test statistics"